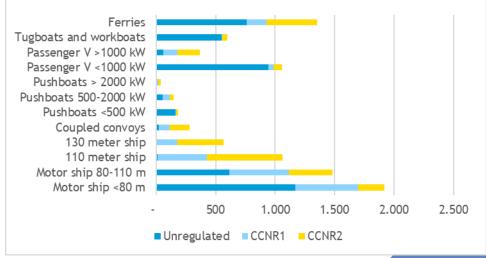


Fleet scenarios (D2.4) and Socio-economic study (C1)

MON-DESI

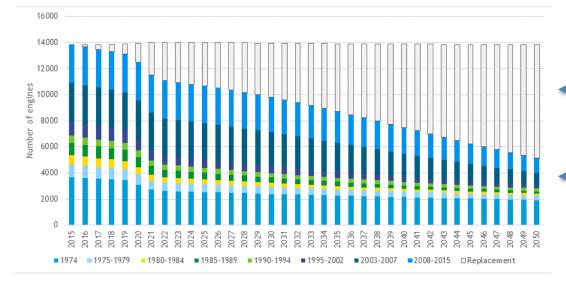
CLINSH 25 November 2021 Rotterdam, Matthijs Otten


- Baseline scenario of fleet development (D2.4)
- Analysis of socio-economic impact of abatement techniques (C1).
- CLINSH scenario: based on most optimal socioeconomic choices (D2.4).
- Socio-economic impacts of CLINSH scenario

Baseline scenario CLINSH

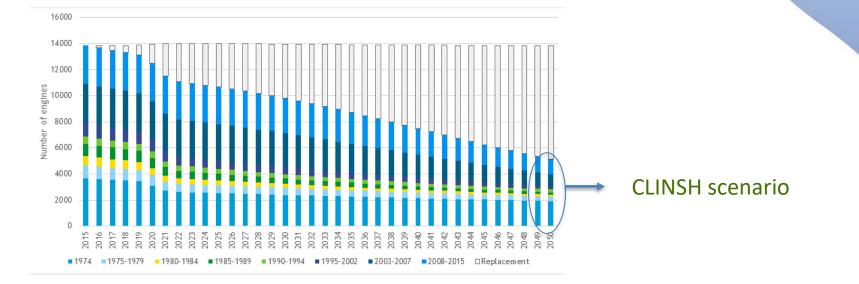
- 1. Engines in fleet based on date from Prominent/ STC Nestra (base year 2015)
- 2. Developments towards 2050 modelled taking into account:
 - Autonomous engine renewal based on engine age and engine lifetime and restrictions in Rotterdam.
 - Market developments of transport volumes (e.g. oil coal)
 - Developments in vessel size
- 3. Result: Number of vessels and engines by age and vessel type from 2015-2035

Data for base year (Prominent/ STC Nestra)



Development of vessel size

Baseline scenario CLINSH



New engines: default Stage V

Remaining old engines (CCR0, 1,2)

Baseline scenario CLINSH

SUSTAINABLE WATERWAY TRANSPORT, CLEAN AIR

Analysis of socio-economic impact of abatement technologies (C1).

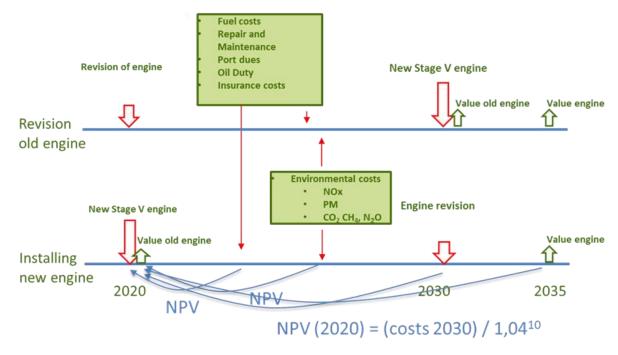
Technologies considered in relation to revision of existing engine:

- New stage V engine
- LNG dual fuel refit
- SCR/ DPF
- Battery electric,
- Revision + GTL

- LNG mono-fuel
- SCR
- Diesel- electric
- Revision + FWE,
- Euro VI engine

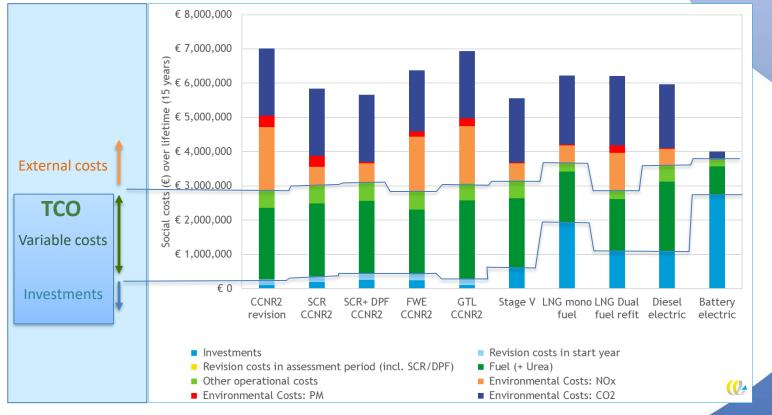
Social Costs and benefits assessed based with input from

- CLINSH monitoring results on emissions (NOx reduction) complemented with literature (PM and CO₂ reduction)
- Investment and operational costs based on monitoring ships and literature (e.g. Prominent study)

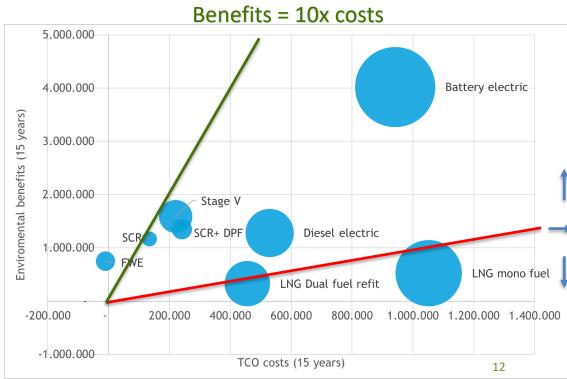

(S)CBA analysis - assumptions

- Assessment of costs and benefits over **15** years.
- Analysis per ship category; Per ship category differentiation between low, medium and high fuel consumption.
- Costs included in assessment :
 - Investments, reinvestments in same technology, upkeep investments, residual values, energy costs, other variable cost, and external costs.
- Monetisation of emissions*:
 - WTW CO₂: €167 / tonne average_ € 100 (2020)- € 269 (2050) / tonne,
 - NO_x: (€20/ kg),
 - PM_{2.5}: (€123/ kg)
- Cost and benefits calculated as Net Present Value over 15 years;
 - Diesel price € 697 /tonne
 - LNG: 75% of diesel price (per ton fuel)
 - Electricity: € 0.10 / kWh
 - Battery price €500 (2020) 150 (2040)

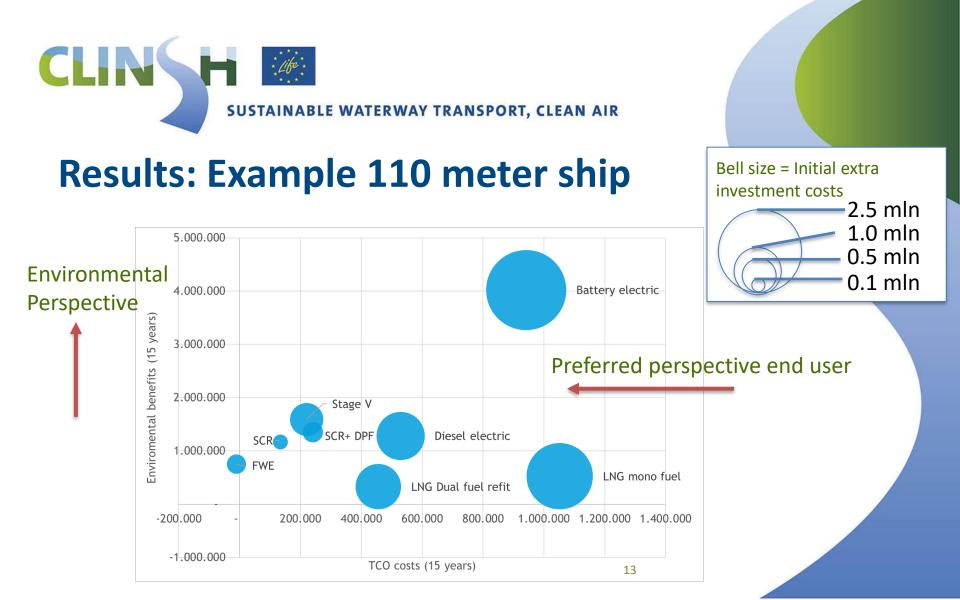
*Handbook on the external costs of transport – January 2019



SCBA framework



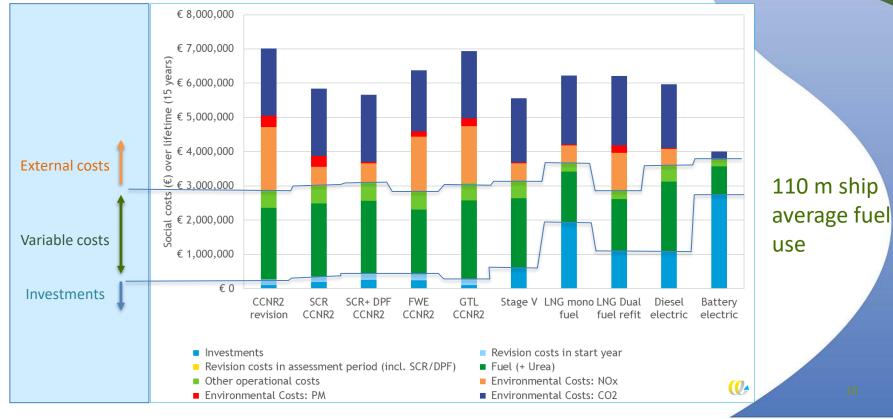
Results engine costs 110 m ship – 15 years



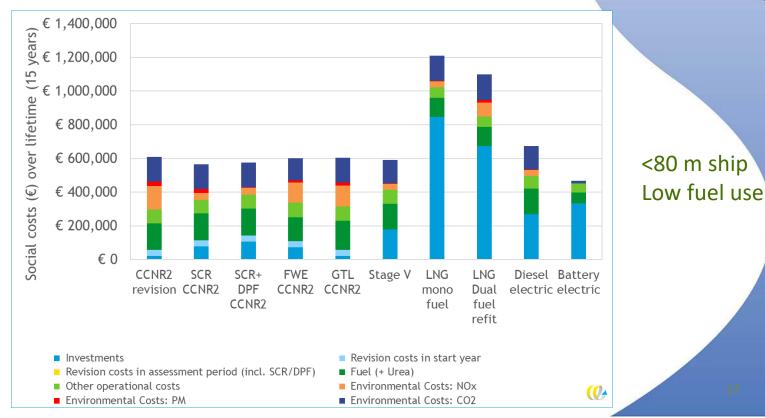
Results: Example 110 meter ship

Bell size = Initial extra investment costs 2.5 mln 1.0 mln 0.5 mln 0.1 mln Costs < benefits Costs = benefits Costs > benefits

Results: Example 110 meter ship


	User perspective		Environmental perspective			
	Initial investment costs	TCO extra costs	Enviromental benefits (euro)	Benefits / Costs		
Stage V	437.255	220.380	1.591.376	7,2		
LNG mono fuel	1.752.035	1.052.378	523.724	0,5		
LNG Dual fuel refit	824.270	455.760	327.302	0,7		
SCR	87.032	133.777	1.167.514	8,7		
SCR+ DPF	161.785	240.787	1.350.749	5,6		
Diesel electric	927.721	528.702	1.283.054	2,4		
Battery electric	2.561.163	941.805	4.022.564,7	4,3		
FWE	148.637	-10.735	751.182	-70,0		
GTL	-	208.948	202.697	1,0		

- Projection Year 2035
- Focus on Air quality
 - Biofuels (HVO, bio LNG) are options in combination with assessed technologies but not part of assessment.
 - Battery electric till 2035 still immature: high (re)-investment; limited range.
- Social optimum scenario



Social optimal perspective: lowest total costs

Social optimal perspective: lowest total costs

SUSTAINABLE WATERWAY TRANSPORT, CLEAN AIR

ike :

CLIN

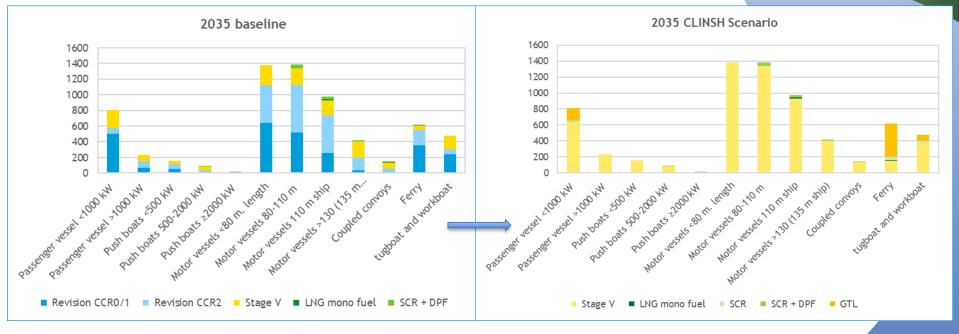
Results: social optimal perspective: CCNR 2

Vessel category	Low fuel use	Average fuel use	High fuel use
Passenger vessel <250 kW	GTL CCNR2	GTL CCNR2	Stage V
Passenger vessel 250 - 500 kW	GTL CCNR2	SCR CCNR2	Stage V
Passenger vessel 500 - 1000 kW	GTL CCNR2	SCR CCNR2	Stage V
Passenger vessel >1000 kW	Stage V	Stage V	Stage V
Push boats <500 kW	Stage V	Stage V	Stage V
Push boats 500-2000 kW	Stage V	Stage V	Stage V
Push boats ≥2000 kW	LNG mono fuel	LNG mono fuel	LNG mono fuel
Motor vessels <80 m. length	Stage V	Stage V	Stage V
Motor vessels dry cargo typical 80 and 86 m ship	Stage V	Stage V	Stage V
Motor vessels dry cargo typical 105 m ship	Stage V	Stage V	Stage V
Motor vessels dry cargo 110 m ship	Stage V	Stage V	Stage V
Motor vessels dry cargo >130 (135 m ship)	Stage V	Stage V	Stage V
Motor vessels liquid cargo 80-109m length (typic	Stage V	Stage V	Stage V
Motor vessels liquid cargo 110 m ship	Stage V	Stage V	Stage V
Motor vessels liquid cargo >130 (135 m ship)	Stage V	Stage V	Stage V
Coupled convoys	Stage V	Stage V	Stage V
Ferry	GTL CCNR2	GTL CCNR2	SCR CCNR2
Tugboat and workboat	GTL CCNR2	SCR CCNR2	Stage V

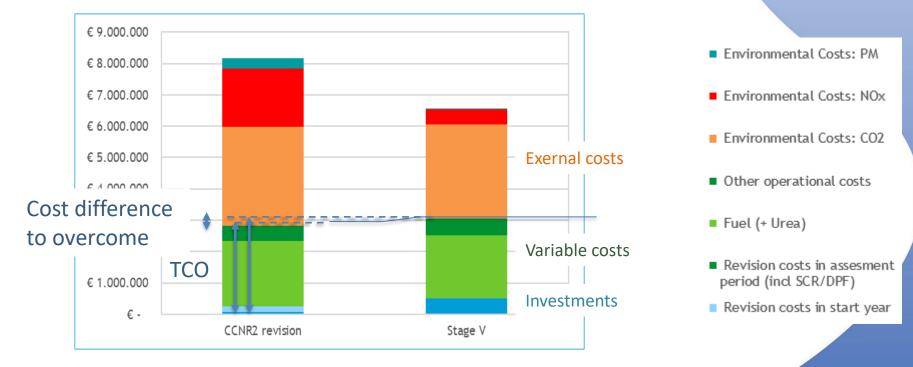
Batterelectric not considered up to 2035

Results: social optimal perspective: CCNR 0/1

Vessel category	Low fuel use	Average fuel use	High fuel use
Passenger vessel <250 kW	GTL CCNR0	Stage V	Stage V
Passenger vessel 250 - 500 kW	GTL CCNR0	Stage V	Stage V
Passenger vessel 500 - 1000 kW	SCR CCNR0	Stage V	Stage V
Passenger vessel >1000 kW	Stage V	Stage V	Stage V
Push boats <500 kW	Stage V	Stage V	Stage V
Push boats 500-2000 kW	Stage V	Stage V	Stage V
Push boats ≥2000 kW	LNG mono fue	LNG mono fuel	LNG mono fuel
Motor vessels <80 m. length	Stage V	Stage V	Stage V
Motor vessels dry cargo typical 80 and 86 m ship	Stage V	Stage V	Stage V
Motor vessels dry cargo typical 105 m ship	Stage V	Stage V	Stage V
Motor vessels dry cargo 110 m ship	Stage V	Stage V	Stage V
Motor vessels dry cargo >130 (135 m ship)	Stage V	Stage V	Stage V
Motor vessels liquid cargo 80-109m length (typical 86 m ship)	Stage V	Stage V	Stage V
Motor vessels liquid cargo 110 m ship	Stage V	Stage V	Stage V
Motor vessels liquid cargo >130 (135 m ship)	Stage V	Stage V	Stage V
Coupled convoys	Stage V	Stage V	Stage V
Ferry	GTL CCNR0	GTL CCNR0	Stage V
Tugboat and workboat	GTL CCNR0	Stage V	Stage V


Batterelectric not considered up to 2035

CLINCH CUSTAINABLE WATERWAY TRANSPORT, CLEAN AIR CLINSH Scenario results


- Stage V in most cases lowest social costs
 - Higher efficiency combined with lowest Nox and PM levels
- For some smaller ships GTL is a suitable alternative;
- SCR is attractive for some smaller ships with higher fuel consumption

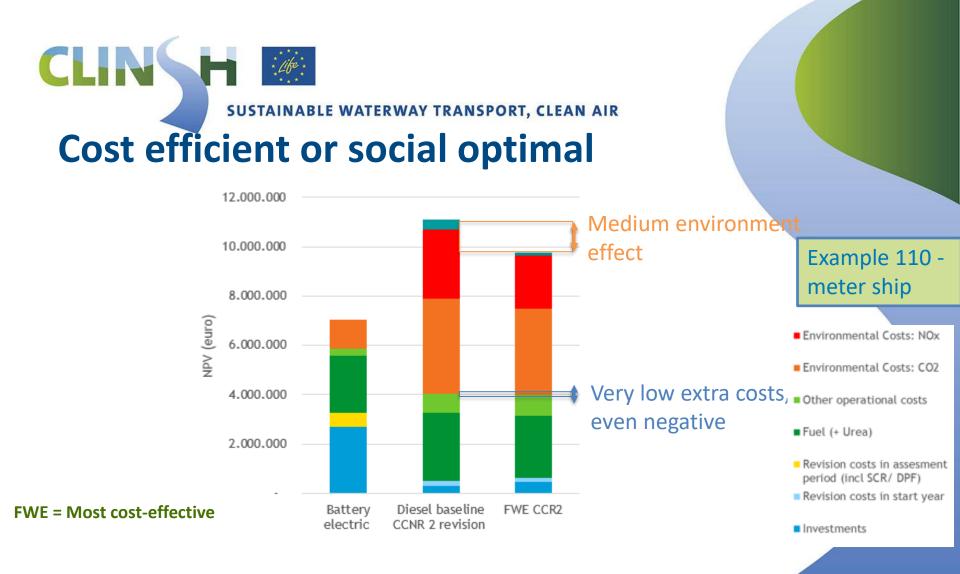
CLINSH scenario results

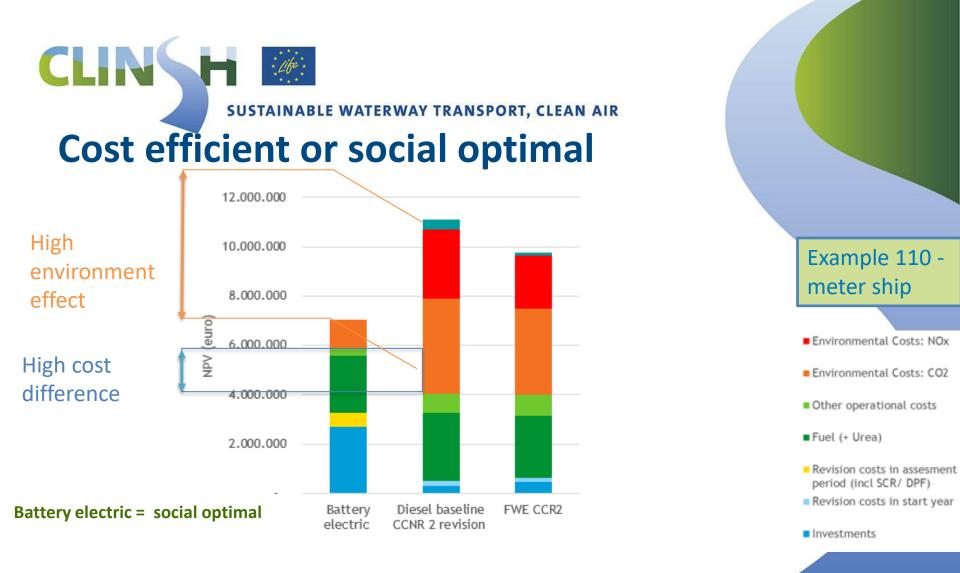
CLIN H SUSTAINABLE WATERWAY TRANSPORT, CLEAN AIR Policy Instruments needed to overcome cost difference

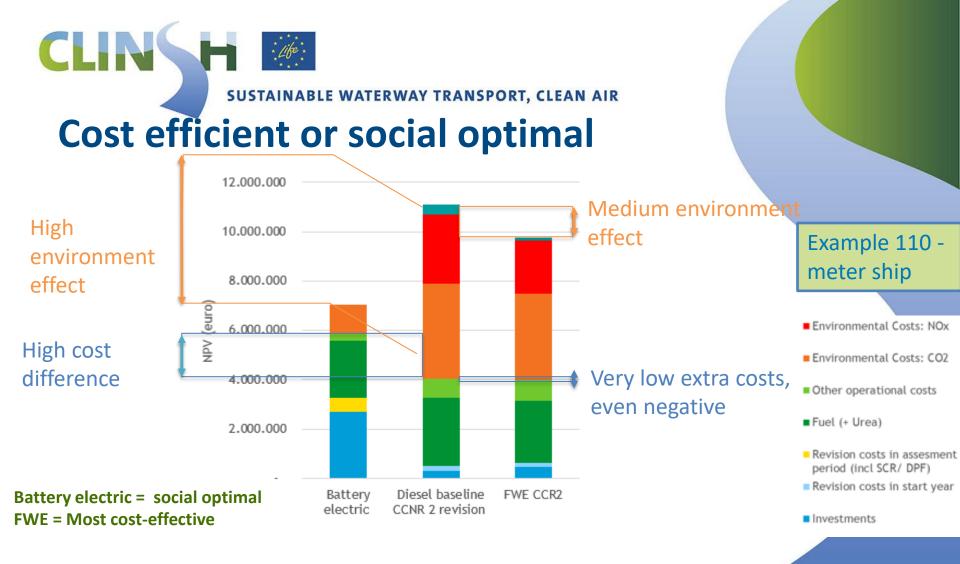
Socio-economic impacts CLINSH Scenario

Costs for greening the total fleet

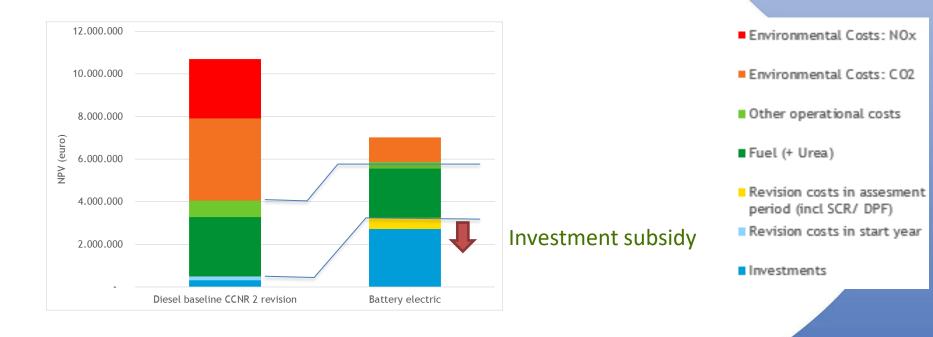
	Total social costs Baseline sce- nario 2020- 2035	costs CLINSH	
Number of vessels involved, West-Europe*	6,572	6,572	
Social costs with 15 years lifetime (mio \in), consisting of:	€ 26,139	€ 21,280	€ -4,859
TCO (Total cost of ownership) with 15 years lifetime (mio €)	€ 10,751	€ 11,512	€ 761
CO₂ costs with 15 years lifetime (mio €)	€ 8,074	€ 7,867	€-207
NOx costs with 15 years lifetime (mio €)	€ 6,051	€ 1,788	€ -4,263
PM costs with 15 years lifetime (mio €)	€ 1,264	€ 112	€ -1,151
Initial investment costs (mio €)	€ 1,123	€ 2,393	€ 1,270
Diesel consumed over 15 years (mio litres)	14,662	14,286	-376
TCO increase per litre of diesel (€ per litre)	€0.733	€ 0.806	€ 0.053**




Questions



CLINSH Scenario results


Vessel type	Revision CCR0/1	Revision CCR2	Stage V	LNG mono fuel	LNG Dual fuel refit	SCR	SCR + DPF	Diesel electric	Battery electric	FWE	GTL
Passenger vessel <250 kW			79%								21%
Passenger vessel 250 - 500 kW			75%			6%					1 9 %
Passenger vessel 500 – 1,000 kW			68%			27%					5%
Passenger vessel >1,000 kW			100%								
Push boats <500 kW			100%								
Push boats 500-2,000 kW			97%				3%				
Push boats ≥2,000 kW			97%				3%				
Motor vessels <80 m. length			100%								
Motor vessels dry cargo typical 80 and 86 m ship			97 %				3%				
Motor vessels dry cargo typical 105 m ship			97 %				3%				
Motor vessels dry cargo 110 m ship			97 %				3%				
Motor vessels dry cargo >130 (135 m ship)			97%				3%				
Motor vessels liquid cargo 80-109m length (typical 86 m ship)			97%				3%				
Motor vessels liquid cargo 110 m ship			95%	2%			3%				
Motor vessels liquid cargo >130 (135 m ship)			97%				3%				
Coupled convoys			96%	1%			3%				
Ferry			24%	1%		8%					68%
Tugboat and workboat			77%			7%					16%
Total			87%			2%	2%				10%

